Microwave testing has been paid only scant attention in the literature as a method for nondestructive testing of materials, yet it offers some attractive features, especially for the testing of composite and other non-metallic materials. Microwave techniques have been used in a large number of applications that can be classified as nondestructive testing applications, ranging from large scale remote sensing to detection of tumors in the body. This volume describes a unified approach to microwave nondestructive testing by presenting the three essential components of testing: theory, practice, and modelling. While recognizing that each of these subjects is wide enough to justify a volume of its own, the presentation of the three topics together shows that these are interrelated and should be practiced together. While few will argue against a good theoretical background, modelling and simulation of the testing environment is seldom part of the NDT training in any method, but particularly so in microwave testing. The text is divided in four parts. The first part presents the field theory background necessary for understanding the microwave domain. The second part treats microwave measurements as well as devices and sources and the third part discusses practical tests applicable to a variety of materials and geometries. The fourth part discusses
modelling of microwave testing. Each chapter contains a bibliography intended to expand on the material given and, in particular, to point to subjects which could not be covered either as not appropriate or for lack of space. For engineers, applied physicists, material scientists. This book is the second of two volumes which have been created to provide an understanding of the basic principles and applications of electromagnetic fields for electrical engineering students. Fundamentals of Electromagnetics Vol 2: Quasistatics and Waves examines how the low-frequency models of lumped elements are modified to include parasitic elements. For even higher frequencies, wave behavior in space and on transmission lines is explained. Finally, the textbook concludes with details of transmission line properties and applications. Upon completion of this book and its companion Fundamentals of Electromagnetics Vol 1: Internal Behavior of Lumped Elements, with a focus on the DC and low-frequency behavior of electromagnetic fields within lumped elements, students will have gained the necessary knowledge to progress to advanced studies of electromagnetics. Respected for its accuracy, its smooth and logical flow of ideas, and its clear presentation, 'Field and Wave Electromagnetics' has become an established textbook in the field of electromagnetics. This book builds the electromagnetic model using an axiomatic approach in steps: first for static electric fields, then for static magnetic fields, and finally for time-varying fields leading to Maxwell's equations. Gauss's law for electric fields, Gauss's law for magnetic fields, Faraday's law, and the Ampere–Maxwell law are four of the most influential equations in science. In this guide for students, each equation is the subject of an entire chapter, with detailed, plain-language explanations of the physical meaning of each symbol in the equation, for both the integral and differential forms. The final chapter shows how Maxwell’s equations may be combined to produce the wave equation, the basis for the electromagnetic theory of light. This book is a wonderful resource for undergraduate and graduate courses in electromagnetism and electromagnetics. A website hosted by the author at www.cambridge.org/9780521701471 contains interactive solutions to every problem in the text as well as audio podcasts to walk students through each chapter. "Engineering Electromagnetics and Waves" is designed for upper-division college and university engineering students, for those who wish to learn the subject through self-study, and for practicing engineers who need an up-to-date reference text. The student using this text is assumed to have completed typical lower-division courses in physics and mathematics as well as a first course on electrical engineering circuits." "This book provides engineering students with a solid grasp of electromagnetic fundamentals and electromagnetic waves by emphasizing physical understanding and practical applications. The topical organization of the text starts with an initial exposure to transmission lines and transients on high-speed distributed circuits, naturally bridging electrical circuits and electromagnetics. Teaching and Learning Experience This program will provide a better teaching and learning experience-for you and your students. It provides: Modern Chapter Organization Emphasis on Physical Understanding Detailed Examples,
Selected Application Examples, and Abundant Illustrations

Numerous End-of-chapter Problems, Emphasizing Selected Practical Applications

Historical Notes on the Great Scientific Pioneers

Emphasis on Clarity without Sacrificing Rigor and Completeness

Hundreds of Footnotes Providing Physical Insight, Leads for Further Reading, and Discussion of Subtle and Interesting Concepts and Applications

Key Features: Physical aspects of the phenomena are clearly explained. Multiple model representations are employed as per necessity. Problems complementing the text are extensively given. About the Book: 'Basic Laws of Electromagnetism' is a book describing the Fundamental Laws of Electromagnetism with allied examples to help and enable the readers to attain a deeper understanding of the subject and visualize the wide range of applications of the ideas discussed. The book lays emphasis on the physical aspects of the phenomena, avoiding superfluous mathematical formulae. The textbook is quite handy for the students of senior secondary and undergraduate levels, and also for various engineering and medical entrance examinations. This is newly typeset print of a 'Classical Book' in Physics. Newly corrected, this highly acclaimed text is suitable for advanced physics courses. The authors present a very accessible macroscopic view of classical electromagnetics that emphasizes integrating electromagnetic theory with physical optics. The survey follows the historical development of physics, culminating in the use of four-vector relativity to fully integrate electricity with magnetism. Corrected and emended reprint of the Brooks/Cole Thomson Learning, 1994, third edition. This book systematically introduces electromagnetic theories and their applications in practice: electrostatic energy, Poynting theorem, the polarization of waves, the conservation law, the electromagnetic symmetry, the conformal mapping method, the electromagnetic loss. The parameters and theorems of electromagnetic theories are discussed in detail, making the book an essential reference for researchers, and engineers in electromagnetics field. Fundamental of Engineering Electromagnetics not only presents the fundamentals of electromagnetism in a concise and logical manner, but also includes a variety of interesting and important applications. While adapted from his popular and more extensive work, Field and Wave Electromagnetics, this text incorporates a number of innovative pedagogical features. Each chapter begins with an overview which serves to offer qualitative guidance to the subject matter and motivate the student. Review questions and worked examples throughout each chapter reinforce the student's understanding of the material. Remarks boxes following the review questions and margin notes throughout the book serve as additional pedagogical aids. This comprehensive introduction to classical electromagnetic theory covers the major aspects, including scalar fields, vectors, laws of Ohm, Joule, Coulomb, Faraday, Maxwell's equation, and more. With numerous diagrams and illustrations. This book provides students with a thorough theoretical understanding of electromagnetic field equations and it also treats a large number of applications. The text is a comprehensive two-semester textbook. The work treats most topics in two steps - a short, introductory chapter followed by a second chapter with in-depth extensive treatment;
between 10 to 30 applications per topic; examples and exercises throughout the book; experiments, problems and summaries. The new edition includes: modifications to about 30-40% of the end of chapter problems; a new introduction to electromagnetics based on behavior of charges; a new section on units; MATLAB tools for solution of problems and demonstration of subjects; most chapters include a summary. The book is an undergraduate textbook at the Junior level, intended for required classes in electromagnetics. It is written in simple terms with all details of derivations included and all steps in solutions listed. It requires little beyond basic calculus and can be used for self-study. The wealth of examples and alternative explanations makes it very approachable by students. More than 400 examples and exercises, exercising every topic in the book includes 600 end-of-chapter problems, many of them applications or simplified applications Discusses the finite element, finite difference and method of moments in a dedicated chapterBalanis’ second edition of Advanced Engineering Electromagnetics - a global best-seller for over 20 years – covers the advanced knowledge engineers involved in electromagnetic need to know, particularly as the topic relates to the fast-moving, continually evolving, and rapidly expanding field of wireless communications. The immense interest in wireless communications and the expected increase in wireless communications systems projects (antenna, microwave and wireless communication) points to an increase in the number of engineers needed to specialize in this field. In addition, the Instructor Book Companion Site contains a rich collection of multimedia resources for use with this text. Resources include: Ready-made lecture notes in Power Point format for all the chapters. Forty-nine MATLAB® programs to compute, plot and animate some of the wave phenomena Nearly 600 end-of-chapter problems, that's an average of 40 problems per chapter (200 new problems; 50% more than in the first edition) A thoroughly updated Solutions Manual 2500 slides for Instructors are included.In questions of science, the authority of a thousand is not worth the humble reasoning of a single individual. Galileo Galilei, physicist and astronomer (1564-1642) This book is a second edition of “Classical Electromagnetic Theory” which derived from a set of lecture notes compiled over a number of years of teaching elect- magnetic theory to fourth year physics and electrical engineering students. These students had a previous exposure to electricity and magnetism, and the material from the ?rst four and a half chapters was presented as a review. I believe that the book makes a reasonable transition between the many excellent elementary books such as Gri?th’s Introduction to Electrodynamics and the obviously graduate level books such as Jackson’s Classical Electrodynamics or Landau and Lifshitz’ Elect- dynamics of Continuous Media. If the students have had a previous exposure to Electromagnetic theory, allthematerialcanbereasonablycoveredintwosemesters. Neophytes should probable spend a semester on the ?rst four or ?ve chapters as well as, depending on their mathematical background, the Appendices B to F. For a shorter or more elementary course, the material on spherical waves, waveguides, and waves in anisotropic media may be omitted without loss of continuity. The basic objective of this highly
successful text—to present the concepts of electromagnetics in a style
that is clear and interesting to read—is more fully-realized in this
Second Edition than ever before. Thoroughly updated and revised, this
two-semester approach to fundamental concepts and applications in
electromagnetics begins with vector analysis—which is then applied
throughout the text. A balanced presentation of time-varying fields and
static fields prepares students for employment in today’s industrial and
manufacturing sectors. Mathematical theorems are treated separately
from physical concepts. Students, therefore, do not need to review any
more mathematics than their level of proficiency requires. Sadiku is
well-known for his excellent pedagogy, and this edition refines his
approach even further. Student-oriented pedagogy comprises: chapter
introductions showing how the forthcoming material relates to the
previous chapter, summaries, boxed formulas, and multiple choice
review questions with answers allowing students to gauge their
comprehension. Many new problems have been added throughout the
text. This book aims to disseminate geometric algebra as a
straightforward mathematical tool set for working with and
understanding classical electromagnetic theory. Its target readership is
anyone who has some knowledge of electromagnetic theory,
predominantly ordinary scientists and engineers who use it in the
course of their work, or postgraduate students and senior
undergraduates who are seeking to broaden their knowledge and
increase their understanding of the subject. It is assumed that the
reader is not a mathematical specialist and is neither familiar with
geometric algebra or its application to electromagnetic theory. The
modern approach, geometric algebra, is the mathematical tool set we
should all have started out with and once the reader has a grasp of the
subject, he or she cannot fail to realize that traditional vector analysis
is really awkward and even misleading by comparison. Professors can
request a solutions manual by email: pressbooks@ieee.org
This book deals with electromagnetic theory and its applications at the level of a
senior-level undergraduate course for science and engineering. The
basic concepts and mathematical analysis are clearly developed and the
important applications are analyzed. Each chapter contains numerous
problems ranging in difficulty from simple applications to challenging.
The answers for the problems are given at the end of the book. Some
chapters which open doors to more advanced topics, such as wave
theory, special relativity, emission of radiation by charges and
antennas, are included. The material of this book allows flexibility in the
choice of the topics covered. Knowledge of basic calculus (vectors,
differential equations and integration) and general physics is assumed.
The required mathematical techniques are gradually introduced. After a
detailed revision of time-independent phenomena in electrostatics and
magnetism in vacuum, the electric and magnetic properties of matter
are discussed. Induction, Maxwell equations and electromagnetic
waves, their reflection, refraction, interference and diffraction are also
studied in some detail. Four additional topics are introduced: guided
waves, relativistic electrodynamics, particles in an electromagnetic field
and emission of radiation. A useful appendix on mathematics, units and
physical constants is included. Contents 1. Prologue. 2. Electrostatics in

Engineering Electromagnetics provides a solid foundation in electromagnetics fundamentals by emphasizing physical understanding and practical applications. Electromagnetics, with its requirements for abstract thinking, can prove challenging for students. The authors' physical and intuitive approach has produced a book that will inspire enthusiasm and interest for the material.

Benefiting from a review of electromagnetic curricula at several schools and repeated use in classroom settings, this text presents material in a rigorous yet readable manner. FEATURES/BENEFITS Starts with coverage of transmission lines before addressing fundamental laws, providing a smooth transition from circuits to electromagnetics. Emphasizes physical understanding and the experimental bases of fundamental laws. Offers detailed examples and numerous practical end-of-chapter problems, with each problem's topical content clearly identified. Provides historical notes, abbreviated biographies, and hundreds of footnotes to motivate interest and enhance understanding.

Back Cover Benefiting from a review of electromagnetics curricula at several schools and repeated use in classroom settings, this text presents material in a comprehensive and practical yet readable manner. Features: Starts with coverage of transmission lines before addressing fundamental laws, providing a smooth transition from circuits to electromagnetics. Emphasizes physical understanding and the experimental bases of fundamental laws. Offers detailed examples and numerous practical end-of-chapter problems, with each problem's topical content clearly identified. Provides historical notes, abbreviated biographies, and hundreds of footnotes to motivate interest and enhance understanding.

Metamaterials have become one of the most important emerging technologies in the scientific community due to its unusual electromagnetic properties. Consequently, during the last years, a huge deal of efforts has been concentrated in order to design functional components and devices based on metamaterials for many potential applications. The main objective of this book is to present in-depth analysis of the theory, properties, and realizations of novel devices that could be integrated within modern and future communication systems. The book contains 11 chapters written by acknowledged experts, researchers, academics, and microwave engineers, providing comprehensive information and covering a wide range of topics on several aspects of microwaves and optics, including polarization conversion, asymmetric transmission, transmission lines, filters, plasmonic lenses, tunable metamaterials, light manipulation, absorbers, and antennas, among others. This book is suitable for scholars from large scientific domain and therefore given to engineers, scientists, graduates, and other interested professionals as a reference on these artificial materials of tomorrow.
electromagnetics and antenna technology. This book covers the design, electromagnetic simulation, fabrication, and measurements for various types of antennas, including impedance matching techniques and beamforming for ultrawideband dipoles, monopoles, loops, vector sensors for direction finding, HF curtain arrays, 3D printed nonplanar patch antenna arrays, waveguides for portable radar, reflector antennas, and other antennas. It explores the essentials of phased array antennas and includes detailed derivations of important field equations, and a detailed formulation of the method of moments. This resource exhibits essential derivations of equations, providing readers with a strong foundation of the underpinnings of electromagnetics and antennas. It includes a complete chapter on the details of antenna and electromagnetic test and measurement. This book explores details on 3D printed non-planar circular patch array antenna technology and the design and analysis of a planar array-fed axisymmetric gregorian reflector. The lumped-element impedance matched antennas are examined and include a look at an analytic impedance matching solution with a parallel LC network. This book provides key insight into many aspects of antenna technology that have broad applications in radar and communications.

A clearly written introduction to the key physical and engineering principles of electromagnetics, first published in 2000. In the past few decades, Magnetic Resonance Imaging (MRI) has become an indispensable tool in modern medicine, with MRI systems now available at every major hospital in the developed world. But for all its utility and prevalence, it is much less commonly understood and less readily explained than other common medical imaging techniques. Unlike optical, ultrasonic, X-ray (including CT), and nuclear medicine-based imaging, MRI does not rely primarily on simple transmission and/or reflection of energy, and the highest achievable resolution in MRI is orders of magnitude smaller that the smallest wavelength involved. In this book, MRI will be explained with emphasis on the magnetic fields required, their generation, their concomitant electric fields, the various interactions of all these fields with the subject being imaged, and the implications of these interactions to image quality and patient safety. Classical electromagnetics will be used to describe aspects from the fundamental phenomenon of nuclear precession through signal detection and MRI safety. Simple explanations and Illustrations combined with pertinent equations are designed to help the reader rapidly gain a fundamental understanding and an appreciation of this technology as it is used today, as well as ongoing advances that will increase its value in the future. Numerous references are included to facilitate further study with an emphasis on areas most directly related to electromagnetics. Designed to support interactive teaching and computer assisted self-learning, this second edition of Electrical Energy Conversion and Transport is thoroughly updated to address the recent environmental effects of electric power generation and transmission, which have become more important together with the deregulation of the industry. New content explores different power generation methods, including renewable energy generation (solar, wind, fuel cell) and includes new sections that discuss the upcoming Smart Grid and the distributed power generation using renewable
energy generation, making the text essential reading material for students and practicing engineers. Modern Introductory Electromagnetics relates physical principles to engineering practice with a number of application deriving mathematical tools from physical concepts when needed. The comprehensive study of electric, magnetic and combined fields is nothing but electromagnetic engineering. Along with electronics, electromagnetics plays an important role in other branches. The book is structured to cover the key aspects of the course Electromagnetic Field Theory for undergraduate students. The knowledge of vector analysis is the base of electromagnetic engineering. Hence book starts with the discussion of vector analysis. Then it introduces the basic concepts of electrostatics such as Coulomb's law, electric field intensity due to various charge distributions, electric flux, electric flux density, Gauss's law, divergence and divergence theorem. The book continues to explain the concept of elementary work done, conservative property, electric potential and potential difference and the energy in the electrostatic fields. The detailed discussion of current density, continuity equation, boundary conditions and various types of capacitors is also included in the book. The book provides the discussion of Poisson's and Laplace's equations and their use in various of practical applications. The chapter on magnetostatics incorporates the explanation of Biot-Savart's law, Ampere's circuital law and its applications, concept of curl, Stoke's theorem, scalar and vector magnetic potentials. The book also includes the concept of force on a moving charge, force on differential current element and magnetic boundary conditions. The book covers all the details of Faraday's laws, time varying fields, Maxwell's equations and Poynting theorem. Finally, the book provides the detailed study of uniform plane waves including their propagation in free space, perfect dielectrics, lossy dielectrics and good conductors. The book uses plain, lucid language to explain each topic. The book provides the logical method of explaining the various complicated topics and stepwise methods to make the understanding easy. The variety of solved examples is the feature of this book which helps to inculcate the knowledge of the electromagnetics in the students. Each chapter is well supported with necessary illustrations and self-explanatory diagrams. The book explains the philosophy of the subject which makes the understanding of the concepts very clear and makes the subject more interesting. This introductory text provides coverage of both static and dynamic fields. There are references to computer visualisation (Mathcad) and computation throughout the text, and there are Mathcad electronic books available free on the Internet to help students visualise electromagnetic fields. Important equations are highlighted in the text, and there are examples and problems throughout, with answers to the problems at the back of the book. As the availability of powerful computer resources has grown over the last three decades, the art of computation of electromagnetic (EM) problems has also grown - exponentially. Despite this dramatic growth, however, the EM community lacked a comprehensive text on the computational techniques used to solve EM problems. The first edition of Numerical Techniques in Electromagnetics filled that gap and became the
reference of choice for thousands of engineers, researchers, and students. The Second Edition of this bestselling text reflects the continuing increase in awareness and use of numerical techniques and incorporates advances and refinements made in recent years. Most notable among these are the improvements made to the standard algorithm for the finite difference time domain (FDTD) method and treatment of absorbing boundary conditions in FDTD, finite element, and transmission-line-matrix methods. The author also added a chapter on the method of lines. Numerical Techniques in Electromagnetics continues to teach readers how to pose, numerically analyze, and solve EM problems, give them the ability to expand their problem-solving skills using a variety of methods, and prepare them for research in electromagnetism. Now the Second Edition goes even further toward providing a comprehensive resource that addresses all of the most useful computation methods for EM problems. CD-ROM contains: Demonstration exercises -- Complete solutions -- Problem statements. A review of the fundamental theory for the transverse electromagnetic mode (TEM) on transmission lines, with emphasis on communications applications. The coverage includes transient performance of relevance for digital systems as well as the more traditional steady-state sinusoidal performance. Field and wave electromagnetics (World Student S.) Soon to be a Netflix Original Series! "Wildly imaginative." — President Barack Obama on The Three-Body Problem trilogy This near-future trilogy is the first chance for English-speaking readers to experience this multiple-award-winning phenomenon from Cixin Liu, China's most beloved science fiction author. In The Dark Forest, Earth is reeling from the revelation of a coming alien invasion-in just four centuries' time. The aliens' human collaborators may have been defeated, but the presence of the sophons, the subatomic particles that allow Trisolaris instant access to all human information, means that Earth's defense plans are totally exposed to the enemy. Only the human mind remains a secret. This is the motivation for the Wallfacer Project, a daring plan that grants four men enormous resources to design secret strategies, hidden through deceit and misdirection from Earth and Trisolaris alike. Three of the Wallfacers are influential statesmen and scientists, but the fourth is a total unknown. Luo Ji, an unambitious Chinese astronomer and sociologist, is baffled by his new status. All he knows is that he's the one Wallfacer that Trisolaris wants dead. The Three-Body Problem Series The Three-Body Problem The Dark Forest Death's End Other Books Ball Lightning Supernova Era To Hold Up The Sky (forthcoming) At the Publisher's request, this title is being sold without Digital Rights Management Software (DRM) applied. Fundamental of Engineering Electromagnetics not only presents the fundamentals of electromagnetism in a concise and logical manner, but also includes a variety of interesting and important applications. While adapted from his popular and more extensive work, Field and Wave Electromagnetics, this text incorporates a number of innovative pedagogical features. Each chapter begins with an overview which serves to offer qualitative guidance to the subject matter and motivate the student. Review questions and worked examples throughout each chapter reinforce the student's understanding of the material. Remarks
boxes following the review questions and margin notes throughout the book serve as additional pedagogical aids. New edition of a classic textbook, introducing students to electricity and magnetism, featuring SI units and additional examples and problems.

Copyright code: 5ddef9d7d3a3d1739a21cf8cf5032261